
Does phasic dopamine signalling play a causal role in
reinforcement learning?

Peter Shizgal∗
Centre for Studies in Behavioural Neurobiology

Department of Psychology
Concordia University
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Montréal, QC H4B 1R6
Canada

vpallikaras@gmail.com

Yannick-André Breton
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Abstract

The reward-prediction-error hypothesis holds that payoff from future actions can be maximized and reward predic-
tions optimized by incremental adjustment of connection weights in neural networks underlying expectation and choice.
These adjustments are driven by reward prediction errors, discrepancies between the experienced and expected reward.
Phasic firing in midbrain dopamine neurons is posited to both represent reward-prediction errors and to cause the weight
changes these errors induce. There is abundant correlational evidence from rodents, monkeys, and humans that midbrain
dopamine neurons encode reward-prediction errors. The work discussed here tests and challenges the causal component
of the reward-prediction-error hypothesis of dopamine activity. Rats were trained to self-administer rewarding electrical
stimulation of the medial forebrain bundle or optical stimulation of midbrain dopamine neurons. Stimulation-induced
release of dopamine was monitored by means of fast-scan cyclic voltammetry. Both forms of stimulation triggered re-
liable, recurrent release of dopamine in the nucleus accumbens. According to the RPE-DA hypothesis, such repeated,
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response-contingent release should eventually drive action weights into saturation. If unopposed by a countervailing
influence, the repeated release of dopamine should render stable reward-seeking performance at non-maximal levels
impossible. Instead, the rats performed at stable non-maximal levels in response to intermediate stimulation strengths.
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Reward-prediction errors, dopamine, and intracranial self-stimulation
An elegant, enormously influential hypothesis about the nature and neural mechanisms of learning holds that reward-
prediction errors (RPEs), encoded in the firing of dopamine (DA) neurons, optimize expectations about future rewards
and the values assigned to reward-seeking actions [1]. The seminal paper introducing this reward-prediction-error
hypothesis of dopamine neuron activity (RPE-DA hypothesis) [1] applies temporal-difference reinforcement-learning
(TDRL) methods [2] within an actor-critic framework [3].
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Figure 1: Portrayal of eICSS in [1]

Paramount in the paper by Montague et al. [1] is their inci-
sive account of DA activity in monkeys performing tasks
that combine Pavlovian and operant conditioning. Also
included is a brief discussion of how the TDRL model
applies to electrical intracranial self-stimulation (eICSS),
the performance of instrumental tasks to trigger activa-
tion of brain circuitry. The authors point out that DA
cell bodies in the ventral tegmental area give rise to axons
that course through eICSS sites along the medial forebrain
bundle (MFB). Fig. 1 summarizes their portrayal of eICSS,
which holds that stimulation of eICSS sites produces a fic-
tive RPE by activating DA neurons.

Optogenetic methods make it possible to activate mid-
brain DA neurons exclusively, unlike electrical stimula-
tion, which is less selective. Rodents will work for such
optical stimulation (oICSS) [4, 5, 6]. Specific optical activa-
tion of midbrain DA neurons has also been shown to aug-
ment responding to a redundant reward-predicting cue
that would otherwise have been behaviorally ineffective
and to delay extinction of responding to a cue no longer
paired with the delivery of a sucrose reward [7]. These results were interpreted as evidence for a causal role of DA-
mediated RPEs in learning.

Here, we summarize eICSS and oICSS experiments that reassess the causal role of DA-mediated RPEs in learning. The
behavioral and electrochemical findings are not easily explained by the RPE-DA hypothesis.

Two problems with the original TDRL portrayal and a potential remedy
We note two problems with the portrayal in Fig. 1 as it applies to eICSS of the most extensively studied stimulation site:
the lateral hypothalamic (LH) level of the MFB. First, the positioning of the electrode isolates the RPE from its corrective
consequences. In the case of natural rewards earned under stable conditions, the RPE ”predicts itself away.” The RPE
renders the prediction progressively more accurate, and hence the RPE shrinks progressively to zero. In contrast, an RPE
elicited by means of direct axonal stimulation of DA axons in the MFB would be of constant magnitude because it arises
beyond the regions where the signals encoding the predicted (Vt−Vt−1) and experienced (r) rewards must be combined:
the somatodendritic region of the DA neurons and/or their afferent network. (Recall that under appropriate conditions,
DA firing is perturbed in opposite directions by these two signals.) If the DA neurons were activated downstream from
the point(s) at which these two input signals converge, both the reward prediction and the weight assigned to the reward-
seeking action (e.g., lever pressing) would be driven over repeated iterations to their maximal (saturated) values. Stable
performance for electrically induced rewards of intermediate magnitude would thus be impossible. This prediction is
contradicted by abundant evidence from operant matching experiments in which the value of intermediate-strength
rewards is stable over many repeated reward encounters, e.g. [8].

The consequences of weight saturation due to stimulation of DA axons are illustrated in panel A of Fig. 2. The agent earns
rewards by performing a sustained action (”work”), such as depressing a lever for a required duration. Multiple rewards
can be earned during a trial. When the reward is weak (r = 1), the latency to begin working is long. However, due to the
unconditional RPE, the action weight is boosted by delivery of each reward. Thus, the cumulative work-time accelerates
until it attains its maximal velocity. The stronger the reward (r5 > r4 > r3 > r2 > r1), the shorter the latency to reinitiate
responding after reward delivery and the faster the growth of the action weight. Panel B shows the contrasting case of
a natural reward.The RPE shrinks as the prediction improves, and the action weights stabilize at values proportional to
the reward strength. Thus, the slope of the cumulative work-time trajectory is scaled by the reward strength.

A second problem with the schema in Fig. 1 is the implicit attribution of the behavior to direct activation of DA axons.
These small-diameter axons are unmyelinated and have very high thresholds to activation by extracellular currents [9].
Moreover, psychophysical estimates of conduction velocity, recovery from refractoriness, and frequency following in the
directly activated MFB fibers subserving eICSS of the MFB implicate neurons with myelinated axons much more readily
excited than those of the DA neurons [10].
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Figure 2: Simulations by Peter Dayan
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Figure 3: Revised TDRL account of eICSS and oICSS

Both problems could be solved by changing the assump-
tion about where the stimulation intervenes in the TDRL
schema (Fig. 3). The rewarding effects of MFB stimulation
and intraoral sucrose compete and summate, suggesting
that electrical stimulation of the MFB mimics the value
of a natural reward [11]. If the electrode indeed excites
neurons subserving the primary reward signal (r) instead
of those subserving the RPE, then the temporal-difference
signal (Vt − Vt−1) could come to null this electrically in-
duced input, and trajectories such as those shown in panel
B of Fig. 2 could be achieved. However, as we show below,
this remedy is unavailable in the case of oICSS, which en-
tails direct, unconditional activation of DA neurons. Thus,
Fig. 3 predicts: a) oICSS trajectories like those in panel A
of Fig. 2 coupled to continued simulation-induced DA re-
lease, but b) eICSS trajectories like those in panel B of Fig. 2
coupled to decline and cessation of simulation-induced
DA release. We tested these predictions.

Methods
ICSS. Electrodes for eICSS were aimed at the LH level of
the MFB. Stimulation consisted of 0.5 s trains of constant-current pulses, 0.1 ms in duration. To prepare TH-Cre(+/-)
rats for oICSS, channelrhodopsin-2 (ChR2) was expressed in midbrain DA neurons via Cre-Lox recombination and viral
transfection, and 300 µm-core optical fibers were aimed at the ventral tegmental area (VTA). Optical stimulation consisted
of 1 s trains of 462 or 473 nm pulses, 5 ms in duration.

The triadic-trial paradigm. Experimental sessions were comprised of trials arranged in cycling triads. During the leading
trial of each triad, the strength (pulse frequency) of the stimulation was set to the maximum the rat could tolerate,
whereas during the trailing trial, it was set to a negligibly rewarding value. The stimulation strength on offer during
each central (”test”) trial of the triads was also constant within a trial, but it varied across triads, and was selected at
random from a vector 3-14 elements in length.The maximum and minimum values of the vector were the strengths used
in the leading and trailing trials, respectively.

Electrochemistry. The extracellular DA concentration was measured by means of fast-scan cyclic voltammetry (FSCV).
Carbon-fiber microsensors were aimed at the nucleus accumbens (NAc), and an Ag/AgCl reference electrode was po-
sitioned 10.7 mm caudal to the NAc. Cyclic voltammograms were generated at 10 Hz by applying an 8.5 ms triangular
waveform that ramped from −0.4 V to +1.3 V and back to −0.4 V at a scan rate of 400 V/s. A modification of the
method of Kishida et al. [12] was used to extract DA concentrations: principal-component regression was substituted for
elastic-net regression.

Results and discussion
Fig. 4 shows empirical data from one rat, averaged over 19 sessions, from test trials during which the stimulation strength
was sampled randomly from a 14-element vector. Cumulative work time rises at a roughly constant rate, which de-
pends systematically on the strength of the rewarding stimulation. In 22 rats performing eICSS, we obtained 29 datasets
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Figure 4: eICSS: stable performance for
intermediate-strength electrical rewards

using test-trial stimulation-strength vectors 9 or 14 elements in length.
Like those in Fig. 4, the slopes of the cumulative work-time trajecto-
ries vary systematically as a function of stimulation strength and are
linear or mildly concave downwards. In no case do the data resemble
the simulated results in panel A of Fig. 2, which show initial accelera-
tion towards a constant terminal slope due to the unconditional RPE.
Instead, the results are consistent with panel B of Fig. 2, in which ter-
minal slopes are related systematically to reward strength, and with
the revised TDRL schema in Fig. 3. In the revised schema, stable per-
formance at intermediate levels is achieved because the TD signal can
null the input from the stimulation electrode, thus eliminating the RPE
and the firing of DA neurons that encodes it. To find out whether DA
release indeed ceases during stable eICSS performance at intermedi-
ate levels of performance, we measured DA release in the NAc during
eICSS by means of FSCV.

The FSCV recordings were obtained while the rat performed eICSS in
a simplified version of the triadic-trial paradigm. Only three stimula-
tion strengths were sampled on test trials: the High and Low values
were the same as on leading and trailing trials, respectively, whereas
the Med value was intermediate. Behavioral data from one rat, aver-
aged over two test sessions, are shown in panel B of Fig. 5. Again,
performance for the medium-strength (Med) reward is roughly stable over the course of the trial. Panel A shows the cor-
responding measurements of DA concentration, which are cumulations of the peak post-stimulation DA concentration
measured following delivery of each stimulation train (panel A of Fig. 6). According to the RPE-DA hypothesis, roughly
stable performance at intermediate work levels can be achieved only in the absence of persistent, recurring DA-mediated
RPEs. However, panel A of Figs. 5 and 6 show that stimulation-induced DA release continued throughout the eICSS trial,
thus calling the hypothesis into question.
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Panel B of Fig. 6 shows that op-
tical stimulation of midbrain DA
neurons, like electrical stimula-
tion of the MFB (panel A), per-
sistently and reliably elicits tran-
sient increases in DA concentra-
tion. According to the RPE-
DA hypothesis, such transients
should alter action weights in the
manner depicted in panel A of
Fig. 2: when an intermediate-
strength reward is on offer during
the test trial, the cumulative work
trajectory should accelerate until
it achieves the maximum slope
that the rat’s physical capacity al-
lows. This is not what we found.

R
ew

ar
d 

#

   Time (s)              

[D
A

] / m
ax([D

A
])

R
ew

ar
d 

#

       electrical stimulation

  2   4   6    8    10   

R
ew

ar
d 

#

   Time (s)              

[D
A

] / m
ax([D

A
])

       optical stimulation

  2   4   6    8    10   

BA

Figure 6: DA transients driven by electrical or optical stimulation

3



Proportion of trial time elapsed   

cu
m

ul
at

iv
e 

w
or

k 
tim

e 
/ t

ria
l d

ur
at

io
n

Stimulation strength
 Low (4 pps)
 Med (20 pps)
 High (56 pps)

Figure 7: Stable performance for medium-
strength optical activation of DA neurons

Fig. 7 shows data from a rat working for optical stimulation of mid-
brain DA neurons in the simplified triadic-trial paradigm. When the
reward strength was intermediate, a stable, linear work trajectory
is observed. Linear or slightly concave-downward trajectories were
also shown by five additional rats performing oICSS in the simpli-
fied triadic-trial paradigm. Like the eICSS data, these results call into
question a key aspect of the RPE-DA hypothesis, the notion that DA-
mediated RPEs cause changes in action weights.

Reconciling the results with the RPE-DA hypothesis. Peter Dayan
has proposed a way to reconcile the present findings with the RPE-
DA hypothesis. Could reward predictions come to decrease DA fir-
ing in unstimulated neurons, thus compensating for the excitation of
the subpopulation of DA neurons recruited by the stimulation? The
low baseline firing rate (3-5 spikes s−1) of DA neurons poses a prob-
lem for this proposal: the baseline is much closer to zero than to the
maximum firing rate. Thus, inhibition of multiple unstimulated DA
neurons could be required to compensate for the excitation of each
stimulated neuron. This would be difficult to achieve given the mas-
sive, bilateral recruitment of midbrain DA neurons by electrical MFB
stimulation. That said, this proposal merits rigorous experimental test.

Limitations. In the different versions of the triadic-trial paradigm,
stable behavioral data has been obtained from 26 rats performing working for electrical stimulation and 9 rats working
for optical stimulation. However, concurrent measurements of behavior and DA concentration have been carried out
successively in only two rats to date. Additional subjects must be tested, and the FSCV recording sites must be adjusted
in the light of recent findings showing functional specialization of NAc subregions [13].

Conclusion. The findings reported here raise serious questions about the causal component of the RPE-DA hypothesis
and provide several proofs of principle for novel ways to test this foundational idea.
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